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a b s t r a c t

The influence of matrix anisotropy of variable orientation on single layer folding is investigated using
finite element models. Both linear (Newtonian) and power-law viscous materials are considered. The
results show that the available isotropic analytical solution, when modified to include an appropriate
approximation for the anisotropic viscosity, accurately predicts growth rates at small amplitude for
planar anisotropy oriented at a ¼ 45� to the competent layer for a wide range of normal viscosity ratios
between single layer and matrix (mc ¼ 10, 100) and degrees of anisotropy (d ¼ normal viscosity/shear
viscosity ¼ 2, 12, 25). For high normal viscosity ratio (mc ¼ 100), the deviation from the analytical solution
for other orientations increases with increasing degree of anisotropy but still remains relatively small
(<5% for d ¼ 25). For low normal viscosity ratio (mc ¼ 10), the differences for high d are more significant
and for a s 0�, 45�, or 90� also depend on the imposed boundary conditions. However, if carefully ap-
plied, the analytical solution does provide a benchmark test for numerical codes that include oblique
anisotropy. The numerical models at both small and finite amplitude show that a tight control on the
boundary conditions is crucial for experiments with anisotropic materials, especially when the anisot-
ropy is oblique to the boundaries. Analogue experiments with anisotropic materials, where boundary
conditions are more difficult to control, must therefore be designed and interpreted with caution. Matrix
anisotropy initially oriented obliquely with regard to the maximum shortening direction results in
asymmetric buckle folds in the single layer and asymmetric chevron folds in the matrix, even if the
deformation is purely coaxial. This is true for both linear and power-law materials and for a range of
boundary conditions, both free and constrained. Asymmetric natural fold structures in anisotropic
material do not therefore necessarily imply a component of non-coaxial flow.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

As shown in an earlier study (Kocher et al., 2006), layer-parallel
anisotropy in the matrix has a strong influence on the infinitesimal
and large amplitude stages of single layer folding. The occurrence of
an internal instability in the matrix (e.g. Biot, 1965; Cobbold et al.,
1971; Cobbold, 1976; Latham 1985a,b; Fletcher, 2005), and its in-
terference with the single layer of higher viscosity, cause sub-
stantial changes in growth rates, dominant wavelengths,
amplification history, and finite structure pattern compared to an
isotropic material. In this previous study, we specifically considered
the situation where a pre-existing planar anisotropy is fixed to
material points from the onset of deformation and initially parallel
to an embedded, more competent single layer. Natural examples
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would be finely layered sedimentary rocks, such as turbidites or
radiolarites, or metamorphic rocks with a strong foliation or
banding developed due to metamorphic segregation. In these cases,
the bulk anisotropic behaviour reflects the stacking of layers with
different viscosities or a set of closely-spaced slip surfaces (corre-
sponding to the ‘‘IMSS fluid’’ of Fletcher, 2005; see also Cobbold
et al., 1971). The anisotropy therefore remains parallel to the layer
boundaries during subsequent deformation if the material distri-
bution is not altered by metamorphic or metasomatic processes.
Because multilayered rocks are common in nature, this is an im-
portant case to consider in detail. However, it is only one end-
member of a more general situation, where both the degree of the
anisotropy and its orientation relative to the layer may vary both
initially and during deformation. For example, the approximately
planar foliation in natural slates and schists is typically oblique to
bedding or layering. In polydeformed terrains, subsequent
deformation leads to a crenulation or kinking of the foliation and to
second-phase folding of the layering. In this case, the obliquity of
the foliation may be expected to influence the dynamics of buckling
and the geometry of folds developed in the layering.
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In this paper, finite element models are used to consider pure
shear deformation of an isotropic competent layer embedded in
a rock matrix with differing initial degrees of planar anisotropy and
differing initial orientations of this planar anisotropy relative to the
layer. Both Newtonian and non-linear (power-law) viscous mate-
rials are considered. In particular, it is investigated: (1) if the ana-
lytical theories of Fletcher (1974) and Smith (1977) can still be
applied to determine growth rates and dominant wavelengths; (2)
if oblique anisotropy might cause asymmetric folds to develop in
a background flow field of pure shear; and (3) the influence of
oblique anisotropy on the matrix deformation processes.

2. Numerical method

The numerical experiments were performed using the finite
element code FLASH (Kocher, 2006) and an equivalent code of
Mancktelow (e.g. Viola and Mancktelow, 2005; Passchier et al.,
2005), which solve the Stokes equations in combination with
a non-linear anisotropic power-law rheology in the absence of
gravity. Nine-node quadratic elements for velocity discretization
are combined with a linear pressure approximation (three degrees
of freedom) to avoid chessboard patterns in pressure fields (e.g.
Cuvelier et al., 1986; Poliakov and Podladchikov, 1992). The
implementation of anisotropic viscosity in these codes follows
Mühlhaus et al. (2002a,b; their Eq. (8) in both publications), as
outlined in Kocher (2006) and Kocher et al. (2006, Appendix A). To
verify the results, both codes were tested on a number of model
setups for which analytical solutions are available, including the
analytical solutions of Fletcher (1974) for folding in linear and non-
linear viscous material, and Schmid and Podladchikov (2003) for
the stress and strain rate fields around an elliptical inclusion in
Newtonian fluids.

3. Influence of anisotropy orientation on growth rate
spectra of single layer folds

The analytical solutions of Fletcher (1974) and Smith (1975,
1977) predict the growth rates and dominant wavelengths of single
layer folds in power-law viscous material at infinitesimal ampli-
tudes. These two independent analytical derivations give equiva-
lent results for the growth rate spectra and here the equation of
Fletcher (1974) is used. In Kocher et al. (2006), it was demonstrated
that this analytical solution also allows the determination of
growth rates for layers embedded in a linear viscous anisotropic
matrix. This solution makes use of a proposal by Biot (1965) that the
bulk viscosity of an infinite anisotropic half-space can be approxi-
mated by m ¼ ffiffiffiffiffiffiffiffiffiffi

mnms
p

, where mn and ms are the normal and shear
viscosity of the material. The resulting analytical growth rate was
shown to be in good, though not perfect, agreement with the
results obtained from finite element analysis (max. error �5% for
the chosen parameters, cf. Fig. 2d of Kocher et al., 2006).

However, it has not yet been established if the analytical solu-
tion for growth rates in anisotropic material also applies to the
more general case of a non-layer parallel anisotropy orientation. To
check this, growth rate spectra of a single isotropic Newtonian layer
embedded in an anisotropic Newtonian matrix were calculated for
a normal viscosity contrast of mc ¼ 10 and 100. For each of three
degrees of anisotropy (d ¼ mn/ms ¼ 2, 12, and 25), growth rate values
were calculated for an angle between the competent layer and the
plane of anisotropy of a ¼ 0�, 20�, 45�, 70� and 90�.

The resulting growth rate spectra are shown in Fig. 1. The fol-
lowing observations can be made from these plots. (1) The numer-
ical results are symmetrical about an anisotropy inclination of 45� to
the competent layer. For example, the growth rates for an anisotropy
oriented at 0� and 90� or at 20� and 70� to the layer are identical
because these orientations are equally inclined relative to the 45�
orientation. This is to be expected because the constitutive (or
material) operator relating stress to strain rate in the anisotropic
matrix is symmetric (Mühlhaus et al., 2002a,b; Kocher et al., 2006,
Appendix A) and therefore insensitive to a switch in axes (equiva-
lent to a reflection across the 45� orientation). (2) The analytical
solution of Fletcher (1974) is best approximated by the numerical
results if the anisotropy is oriented at 45� to the competent layer. (3)
The numerical results for a ¼ 0� or 90� – for which the analytical
solution was initially proposed – show a good fit to the predicted
analytical values for high viscosity contrast (e.g. mc ¼ 100 in Fig. 1a–
c). (4) Overall, the model growth rates increasingly deviate from the
analytical curve with increasing degree of anisotropy but, for high
viscosity contrast (mc ¼ 100), the maximum deviation still remains
relatively small (<5% for d ¼ 25 and a ¼ 20� or 70� in Fig. 1c). (5) For
a s 45�, the fit of the numerical results to the analytical solution
deteriorates with decreasing normal viscosity contrast between
matrix and layer (e.g. mc ¼ 10 in Fig. 1d–f). (6) The growth rates for
a ¼ 0� or 90� are generally lower than the theoretical curve,
whereas those for a ¼ 20� or 70� are higher (at least for the
boundary conditions of Fig. 1, see below).

Fig. 2 shows a curve of the maximum growth rate as a function
of the angle a between the plane of anisotropy and the single layer,
for the same boundary conditions and material properties (mc ¼ 10,
d ¼ 25) as is in Fig. 1f. The expected reflection symmetry about the
45� direction is immediately obvious, with a maximum in the
growth rate at a z 12.5� and 77.5�. These results indicate that, with
free slip allowed on the side boundaries, the maximum initial
growth rate of the single layer fold occurs when the planar an-
isotropy is only slightly oblique. However, the outcome is strongly
influenced by the applied boundary conditions.

In Fig. 3, the effects of changing boundary conditions on the
growth rate at very small fold amplitude are investigated, with
a setup otherwise equivalent to Fig. 1f. For upper and lower model
limits that are far removed from the central layer (for Figs. 1–3, the
height of the model is eight times the width), a change in the upper
and lower boundary conditions from (1) free slip in the x direction
but prescribed vy, to (2) totally prescribed vx and vy, has no effect on
the growth rate. In run (3), the upper and lower boundaries were
fully prescribed as in (2) but vy was also set to zero at the inflection
points on the mid-line of the initial sinusoidal perturbation in the
single layer. This effectively ensures that the single layer itself cannot
rotate. As can be seen from Fig. 3, this has no effect on the growth
rates, even when the anisotropy in the matrix is oblique to the layer
and to the boundaries (e.g. for a ¼ 20� or 70�). In contrast, modifying
the side boundary conditions does have a significant influence on
the fold growth rate for orientations other than a ¼ 0�, 45�, or 90�. If,
rather than allowing free slip, vy on the sides is constrained to be
periodic (by assigning only a single global degree of freedom in vy to
every pair of corresponding nodes on either side), the growth rate
for a ¼ 20� or 70� is significantly lower, as seen for (4) and (5) in
Fig. 3, whereas there is no change for a ¼ 0�, 45� or 90�. There is thus
a markedly different response depending on whether the single
layer alone is constrained to not rotate (no significant effect) or both
the layer and anisotropic matrix are constrained to have no com-
ponent of bulk rotation (leading to a reduction in growth rate).

In summary, the numerically calculated growth rate spectra
show that in general the initial growth rates depend strongly on the
orientation of the anisotropy plane with respect to the competent
layer (Fig. 2), although the influence decreases for higher normal
viscosity contrast between layer and matrix (Fig. 1). However, as
was previously shown in Kocher et al. (2006), the geometry and
kinematics of finite-amplitude folding is also influenced by matrix
deformation processes, such as the formation of kink-bands or
chevron folds, and these effects are not considered in the in-
finitesimal amplitude analytical solutions nor in the corresponding
numerical models of Figs. 1–3.
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Fig. 1. Dynamic growth rate spectra of folds for a Newtonian (i.e. linear viscous) isotropic single layer embedded in a Newtonian anisotropic matrix with different anisotropy
orientations, for normal viscosity contrasts of mc ¼ 10 and 100. a describes the difference in orientation between the competent layer (which is parallel to the maximum shortening
direction) and the plane of anisotropy, i.e. if a ¼ 90� , the anisotropy is oriented perpendicular to the competent layer. The height of the models is eight times the width, vx and vy are
both prescribed on the upper and lower boundaries, whereas only vx is prescribed on the side boundaries (‘‘free slip’’ in the y direction). The initial perturbation is sinusoidal with an
amplitude A0 equal to 10�3 of the layer thickness. The width of the model corresponds to one wavelength, with the side boundaries coincident with the hinge position. The dynamic
growth rate is determined for the central hinge from the average of the amplitude A at the upper and lower boundaries of the layer as q ¼ logeðA=A0Þ=3xx � 1, where the strain
increment 3xx in the x direction parallel to the layer is 10�5. The dashed curve is the same in all figures and corresponds to the isotropic analytical solution of Fletcher (1974). The
solid curve is the same analytical solution but with the viscosity in the matrix approximated by m ¼ ffiffiffiffiffiffiffiffiffiffi

mnms
p

, where mn and ms are the normal and shear viscosity of the material. The
degree of anisotropy is given by d ¼ mn/ms.
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4. Anisotropy orientation effects on finite fold formation

To explore the influence of planar anisotropy of arbitrary ori-
entation on the finite development of a single layer fold, a New-
tonian isotropic layer was subjected to pure shear deformation in
a Newtonian anisotropic matrix material for differing degrees of
anisotropy and differing orientations. The viscosity contrast
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Fig. 3. Dynamic growth rate spectra corresponding to Fig. 1f for different boundary
conditions. (1) Prescribed vy but unconstrained vx (‘‘free slip’’) on the upper and lower
boundaries, constrained vx and unconstrained vy (‘‘free slip’’) on the side boundaries;
(2) both vx and vy prescribed on the upper and lower boundaries, same boundary
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perturbation, same boundary conditions on the sides as in (1); (4) prescribed vy but
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right sides constrained to be equal (‘‘periodic’’ boundary conditions in vy); (5) both vx

and vy prescribed on the upper and lower boundaries, and vy periodic at the left and
right sides.
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between layer viscosity and matrix normal viscosity was set to 10,
which would result in very low growth rates in an isotropic New-
tonian matrix (and can be shown in numerical experiments to be
too small to form folds with large wavelength to thickness ratios).
The layer interface was perturbed with a sinusoidal initial pertur-
bation with wavelength equal to the dominant wavelength calcu-
lated from the analytical solution of Fletcher (1974) for an isotropic
matrix and with a maximum amplitude equal to 5% of the layer
thickness. Free surface boundary conditions were applied at the top
boundary. All other boundary velocities were prescribed except for
the lateral boundaries, where the vertical velocity vy was set to be
periodic, but otherwise unconstrained. The resulting folds and the
matrix anisotropy orientation after 32% bulk shortening are shown
in Figs. 4 and 5.

A layer-perpendicular anisotropy has no influence on the fold
symmetry irrespective of the degree of anisotropy (Fig. 4a1–a3). The
anisotropy influences the growth rate of the folds, but since the
growth rates are small due to the small normal viscosity contrast
between layer and matrix, the differences in finite amplitude are
barely noticeable. If the anisotropy deviates slightly from a per-
pendicular orientation (Fig. 4b1–b3), the developing fold is no
longer symmetrical and shows two wavelengths: a short one that is
determined by the wavelength of the initial perturbation, and a long
one for which the layer is folded into an asymmetric shape. For the
imposed side boundary conditions (straight with periodic vy), the
wavelength of any fold developed must be an integer fraction of the
Fig. 4. Colour-coded plots of the orientation of the anisotropy planes and the finite fold sh
viscosity contrast mc ¼ 10), for matrix anisotropy degrees of d ¼ 5, 12 and 25. For the colour
clockwise difference in orientation between the competent layer and the anisotropy plane.
(b1–b3): anisotropy initially oriented at 70� (sub-perpendicular) to the layer. The thin black
prescribed, on the side boundaries vx is prescribed and vy is periodic, and the upper bounda
thickness, is the same for all plots and given in (a3).
model width (1, ½, etc.) and in this case the wavelength of the large
fold appears to be determined by the model width itself. Although
the amplitude of the fold with this second longer wavelength is
large, there is little evidence of strong matrix deformation in the
form of rotated planes of anisotropy, as might be expected to form
for such large amplitude in an isotropic matrix. Without additional
markers (also generally absent in finely foliated natural phyllites or
schists), it is therefore difficult to visualize the extent of deformation
in the matrix, as a cleavage-parallel shearing causes no deflection of
the cleavage planes themselves.

For a ¼ 45� (Fig. 5a1–a3), the folds in the competent layer are
again symmetric, and no second wavelength folding is observable.
The matrix deformation is localized close to the competent layer, as
shown by the small areas near the competent layer where the
anisotropy is rotated. An increase in the degree of anisotropy within
the matrix causes a very small increase in fold amplitude, but no
significant asymmetry of the fold train itself.

However, if the planar anisotropy in the matrix is sub-parallel to
the layer (a¼ 20� in Fig. 5b1–b3), the finite geometry of both matrix
and layer looks remarkably different. Asymmetric chevron folds oc-
cur in the matrix, which merge into a single larger chevron structure
with increasing degree of anisotropy d (Fig. 5b2–b3). The single
competent layer is folded on two wavelengths. The shorter wave-
length folding is determined by the wavelength of the initial per-
turbation, whereas the longer wavelength folding, whose amplitude
increases with increasing degree of anisotropy, has a wavelength
ape after 32% of layer-parallel pure shear shortening in a Newtonian material (normal
code, positive angles are measured anticlockwise from the x-axis. a denotes the initial
(a1–a3): initial anisotropy orientation perpendicular to the competent layer (a ¼ 90�);
lines trace the planes of anisotropy in the matrix. At the lower boundary vx and vy are

ry is left free. The scale in the x and y directions, non-dimensionalized against the layer



Fig. 5. Colour-coded plots of the orientation of the anisotropy planes and the finite fold shape after 32% of layer-parallel pure shear shortening in linear viscous material (viscosity
contrast mc ¼ 10), for matrix anisotropy degrees of d ¼ 5, 12 and 25. (a1–a3): initial anisotropy orientation at 45� to the competent layer; (b1–b3): anisotropy initially oriented at 20�

(sub-parallel to the layer). Boundary conditions and angular conventions are the same as in Fig. 4, as are the x and y dimensions as given in Fig. 4a3.
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determined by the width of the model and is obviously linked to the
development of asymmetric chevron folds in the matrix.

Figs. 4 and 5 illustrate the strong influence that a more obliquely
oriented planar anisotropic matrix (i.e. a s 0�, 45� or 90�) exerts on
the shape of the finite fold in a Newtonian material and provides
interesting insights into the kind of geometry that one might expect
to find in natural rocks if anisotropy plays a role. In particular, it is
important to note that the asymmetric chevron fold in the matrix in
Fig. 5b2–b3, did not develop due to a simple shear component of the
bulk deformation field, but because the matrix anisotropy was
initially oriented at an oblique angle to the competent layer. It is also
notable that, although the initial growth rates at very small am-
plitude are the same for a ¼ 20� and 70� (Fig.1), the finite amplitude
folds that develop are markedly different. This is because, for
a ¼ 20�, finite amplitude folding in the matrix progressively rotates
the local plane of anisotropy into an orientation with an increasing
shear component, which causes geometric softening and promotes
fold growth, whereas this is not the case for the 70� orientation.

As noted above, the top boundary condition was a free surface in
all the experiments presented in Figs. 4 and 5. Such a set-up would be
comparable in nature to folding reaching to the earth’s surface (also
a free boundary) or confined on one side by a weak layer. If the
boundaries are located far enough from the single layer, their in-
fluence is negligible in isotropic materials, and the setup then pro-
vides very accurate results in benchmarking tests (e.g. see Fig. 2a of
Kocher et al., 2006). However, when looking at the deformation of the
whole model domain in the models for anisotropic material pre-
sented here (which is in fact much larger than the selected regions
close to the layer shown in Figs. 4 and 5), it becomes clear that the
matrix structures (i.e. the chevron folds, Fig. 5b2–b3) stretch across
the whole domain and reach the boundaries. In fact, the free surface
at the top of these models is still strongly deformed (Fig. 6). This
observation suggests that the boundary conditions in anisotropic
Newtonian models have a stronger influence on the finite de-
formation in the centre of the model than is the case for isotropic
material. Indeed, this is well seen in Fig. 6, where the location of the
chevron fold band responsible for the developing asymmetry of the
larger wavelength secondary fold is clearly related to the corner of
the model. Indirectly, this is also confirmed by another experiment
with fixed velocities vx and vy instead of a free surface at the top
boundary for the same setup as in Fig. 5b2. This experiment failed,
with the iteration to maintain incompressibility not converging be-
cause of the added constraint that the fixed boundary placed on the
anisotropic material as it attempted to buckle at the boundary. The
effects of boundary conditions and their influence on
the development of asymmetric folds related to inclined anisotropy
are discussed further in Section 6 below.

5. Anisotropy and non-linearity

Based on experimental data gained from natural rock samples, it
is commonly argued that rock deformation is more accurately de-
scribed by power-law constitutive equations (with stress exponent
n between 3 and 5) rather than by a linear viscous (Newtonian)
rheology (e.g. Ranalli, 1995; Turcotte and Schubert, 2002). Some
aspects of the interplay between anisotropy and non-linear



Fig. 6. Marker grid showing the entire model domain deformation for the experiment
in Fig. 5b2, with the vertical axis reduced in scale by a factor of 3. Note that the free
surface at the top of the model is strongly deformed.
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rheology, e.g. the tendency to form conjugate kink-bands, were al-
ready discussed in Kocher et al. (2006). Fletcher (2005) recently
presented an analytical investigation of instability development in
an anisotropic power-law fluid. He considered a homogeneous (i.e.
without any distinct single layer) anisotropic material of infinite
extent, for which there are clearly no boundary effects. However, in
numerical and analogue models (and in nature) there will always be
boundaries, and non-linearity also plays an important role in the
attenuation of boundary effects by providing a mechanism of lo-
calization. This is demonstrated by two experiments (Fig. 7a,b) that
correspond in their general setup to the experiments b2 in Figs. 4
and 5, except that both matrix and layer have a power-law rheology
(stress exponent n ¼ 3), there is no free upper surface, and two
different upper and lower boundary constraints are compared. In
Fig. 7a,b, the velocities vx and vy on the upper and lower boundaries
are fully constrained but two control experiments confirmed that
the resulting finite fold geometry is independent of the boundary
conditions applied at the top of the model (for example the result is
effectively identical if the lower boundary is fully constrained but
the upper boundary is left free, as in Figs. 4–6). For comparison, in
Fig. 7c,d, vy is constrained on the upper and lower boundaries, but vx

is not (i.e., a free slip condition). The influence of this change in
boundary conditions is discussed in Section 6.

For a sub-perpendicular anisotropy (a ¼ 70�, Fig. 7a), the ge-
ometry developed for a power-law rheology is not dramatically
different to that observed in the corresponding experiment for
Newtonian materials (Fig. 4b2). As would be expected, the ampli-
tude of the folds in the single layer is larger, reflecting the larger
growth rate in non-linear materials for the same effective viscosity
contrast (Fletcher, 1974; Smith, 1977). However, for both Newtonian
and power-law rheology, the deformation is concentrated near the
single layer and there is no tendency for larger scale folding in the
matrix.

In contrast, for the case of an anisotropy that was initially sub-
parallel to the layer (Fig. 7b), the resulting folds in the competent
layer are markedly different from those observed in the corre-
sponding experiment with Newtonian materials (Fig. 5b2). The
layer is folded regularly into folds of a wavelength that is governed
by the initial perturbation wavelength. A second order folding of
the layer, as observed in the corresponding Newtonian experi-
ments, is largely absent. The matrix is deformed into asymmetric
chevron folds, the axial planes of which are spaced at roughly the
wavelength of the folded competent layer. A single large chevron
fold that reaches as far as the free surface (as was found in the
Newtonian material) is absent, and the deformation is spread more
regularly throughout the matrix. This observation is counter-
intuitive at first sight, because a stronger localization is expected in
non-linear material. However, the tendency for the heterogeneous
deformation to be more localized around the single layer means
that the perturbed flow does not reach to the boundaries and
therefore is less influenced by boundary effects (e.g. whether the
upper boundary is free or constrained). The clear influence of the
free upper boundary on the development of the larger wavelength
asymmetric fold as seen in Figs. 5b and 6 for Newtonian materials is
therefore not observed in the power-law example of Fig. 7b, irre-
spective of whether the upper boundary is free or fully constrained.
However, differences are observed when the velocities on the lower
boundary are also no longer fully prescribed (Fig. 7c,d) and these
effects will now be discussed.
6. Effect of slip boundary conditions

Compared to analogue experiments, numerical experiments
have the advantage that boundary conditions can be more strictly
defined. As noted in the previous section, power-law rheology
provides a mechanism to damp boundary effects by promoting
localization of deformation. However, the influence of boundary
conditions on the resulting structure can be considerable, even for
power-law rheology.

The two experiments in Fig. 7c,d show the difference that free
slip boundary conditions can make if anisotropy plays a role. They
correspond in their setup to the experiments in Fig. 7a,b with the
difference that vy is prescribed and vx is unconstrained at the top
and bottom boundary. In contrast, in Fig. 7a,b both vx and vy are
prescribed at the lower boundary (and the upper boundary con-
straint in this case is found to have little influence, whether free or
constrained). The resulting folds in Fig. 7c,d show a large second
wavelength equal to the width of the model domain. This second
wavelength is characterized by an anticlockwise (c) or clockwise (d)
rotation of the central part of the competent layer with respect to its
initial orientation. The absence of shear stress at the top and bottom
boundaries allows this rotation, which passively folds the compe-
tent layer. It is important to note that the larger wavelength only
occurs because of the imposed vertical velocity being periodic at the
lateral boundaries. Without this constraint, matrix and layer would
rotate as a whole. These experiments establish that: (1) power-law
rheology is a means to reduce some, but not all, boundary effects; (2)
the interplay between rheology, initial domain geometry and
applied boundary conditions is complex; and (3) a tight control on
boundary conditions is of particular importance if the material



Fig. 7. Colour-coded plots of the orientation of the anisotropy planes and the finite fold shape after 32% of layer-parallel pure shear shortening in power-law material (n ¼ 3), for an
anisotropy degree of d ¼ 12. The viscosity contrast was mc ¼ 10 in all experiments. The initial angle a between the layer and the anisotropy plane was 70� (sub-perpendicular) to the
competent layer for (a) and (c), and 20� (sub-parallel) to the layer for (b) and (d). In (a) and (b), all boundary velocities are prescribed with the exception of vy at the lateral
boundaries, which is periodic, but unconstrained otherwise. In (c) and (d), only the velocities normal to the boundary are given, with the exception of the lateral boundary-parallel
velocities, which are periodic, but unconstrained otherwise. Angular conventions as in Fig. 4.
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under consideration is anisotropic and particularly if the plane of
anisotropy is at a small oblique angle to the boundaries.

7. Asymmetric kink-bands and chevron folds in
anisotropic power-law material

As discussed by Kocher et al. (2006), symmetric chevron folds
developed in a matrix with power-law rheology can evolve from
symmetric conjugate kink-bands through a process of kink-band
broadening and merging. If the anisotropy is initially oriented
obliquely to the competent layer, a similar process takes place, but
with some important differences. This is demonstrated in Fig. 8a–d,
which shows a series of deformation stages of the same experiment
as in Fig. 7b (where a ¼ 20�).

As in the case of a layer-parallel anisotropy, buckling in the
competent layer triggers an internal instability in the anisotropic
matrix, which experiences a shortening component parallel to its
plane of anisotropy. The first noticeable indications of deformation in
the matrix are the rotated planes of anisotropy outlined by the dark
blue bands in Fig. 8a. These deformation bands form perpendicular to
the anisotropy planes, and not at an angle of 15�–20�, as kink-bands
did in the case of a layer-parallel anisotropy (Kocher et al., 2006).
Instead, their orientation with respect to the anisotropy resembles
that of the chevron folds that were observed to develop in Newtonian



Fig. 8. Colour-coded plots of the anisotropy orientation and finite fold shapes for an isotropic power-law layer (n ¼ 3) embedded in anisotropic power-law matrix (n ¼ 3, d ¼ 12), at
(a) 8%, (b) 19%, (c) 27%, and (d) 35% bulk pure shear shortening. The initial angle between the anisotropy and the competent layer was a ¼ 20� . The first set of deformation bands
(dark blue areas in a) develops perpendicular to the planes of anisotropy, whereas the second (conjugate) set (orange deformation bands in b) develops at an angle of about 15� to
the planes of anisotropy. Angular conventions as in Fig. 4.
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material, the axial planes of which were also perpendicular to the
anisotropy orientation. The second set of deformation bands starts to
form at later stages of deformation (Fig. 8b, yellow–red band-like
structures), and makes an angle of 15�–20� to the anisotropy plane.
This corresponds to the kink-band orientations observed in the case
of a layer-parallel anisotropy. It is interesting to note that the width of
the two types of band-like structures is rather different. The second
set of bands is much narrower than the first and does not cross the
latter. It therefore remains much more limited in extent.

During progressive deformation, the two sets of deformation
bands broaden and merge to form asymmetric chevron folds, as can
be seen in the close-up view of the central parts of Fig. 8b,d shown in
Fig. 9. The asymmetry of the chevron folds and the kink-band-like
structures is caused by the oblique anisotropy orientation, and not
by any shearing component to the background deformation field. It
is important to note that the folds in the competent layer remain
largely symmetric throughout the entire deformation process.

8. Random initial perturbations – a closer approximation
to natural conditions

The previous experiments assumed a sinusoidal initial pertur-
bation of the single layer interface, with an initial wavelength
corresponding to the fastest growing or ‘dominant’ wavelength for
the isotropic Newtonian problem. Under natural conditions, both
the perturbation of the layer-matrix interfaces and the anisotropy
orientation are more likely to show a random variation around an
average orientation. Perfect homogeneity in the anisotropy orien-
tation causes the developing chevrons to become (too) regular
compared with natural examples, because no material
inhomogeneities inhibit the propagation of the initial perturbation
of the layer interface into the matrix.

Fig. 10 shows a single layer fold and the surrounding matrix
structure that result if the anisotropy orientation is initially ran-
domly perturbed by �1� around an average a of 20� and the layer
interface is perturbed with a random red noise signal (which is dif-
ferent for the top and bottom interface). Note that the viscosity
contrast between matrix and layer is still mc ¼ 10. The resulting single
layer fold has a much larger wavelength and amplitude compared to
the previous experiments, an observation that is in agreement with
the prediction of larger growth rates and longer wavelengths for
anisotropic materials as seen in Fig. 1. More interesting, however, is
that the central individual folds of the competent layer are clearly
asymmetric. Toward the lateral boundaries, the asymmetry disap-
pears because vx is prescribed there as a boundary condition. The
random perturbation of the anisotropy orientation in the matrix has



Fig. 10. Colour-coded plot of the anisotropy orientation and finite fold shape at 28%
shortening of a power-law layer (n ¼ 3) embedded in anisotropic matrix (n ¼ 3, d ¼ 6),
subjected to a layer-parallel homogeneous pure shear background deformation. All
boundary velocities are prescribed except the vertical velocities at the lateral bound-
aries, where vy is periodic, but unconstrained otherwise. The layer interface was per-
turbed with a red noise random signal (maximum amplitude ¼ 5% of the layer
thickness), and the anisotropy orientation varied randomly �1� around an average
initial orientation of a ¼ 20� . Angular conventions as in Fig. 4.

Fig. 9. Enlarged colour-coded plots of anisotropy orientation and finite fold shape at
(a) 15% and (b) 32% shortening of a power-law layer embedded in anisotropic material
(n ¼ 3, d ¼ 12, the same experiments as in Fig. 8b,d). The solid black lines trace the
approximate anisotropy orientation. The asymmetric deformation bands visible at 15%
shortening (note the wide dark blue areas – that developed first – compared to the
narrow orange bands) are mostly merged into asymmetric chevron folds at 32%
shortening. The asymmetry in the matrix chevron folds occurs due to the anisotropy
not being oriented parallel to the direction of maximum compression at the onset of
deformation.
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two effects. (1) It leads to local matrix instabilities that are not trig-
gered and governed by spreading of the perturbation in the compe-
tent layer interface, but by the local perturbation wavelength within
the matrix. (2) As a consequence, the layer-induced perturbations can
no longer propagate as extensively through the matrix, because they
interfere with the local instabilities in the matrix, which causes
a more irregular (and more naturally-looking) finite deformation
pattern.

These results demonstrate that asymmetric folds are to be
expected in anisotropic material in both layer and matrix, even if
the background deformation field is purely coaxial, the degree of
anisotropy is low, the perturbations in layer and matrix are random,
and the competent layer is initially oriented parallel to the maxi-
mum shortening direction.

9. Discussion

The results presented here illustrate the influence of an arbi-
trarily oriented matrix anisotropy on the finite shape of a fold in
a single isotropic competent layer under pure shear bulk de-
formation. These new numerical experiments provide additional
insights into the deformation process in anisotropic materials that
were not obtained in our previous investigation of folding of
a competent layer in a matrix with layer-parallel anisotropy
(Kocher et al., 2006).

The growth rate spectra establish that the analytical solution of
Fletcher (1974), combined with the earlier work of Biot (1965),
predicts growth rates that correspond well with the numerical
results for orientations of the plane of anisotropy at 0�, 45� or 90� to
the layer (at least if the normal viscosity contrast between the layer
and the matrix is high; Fig. 1a–c). The description of the bulk vis-
cosity of the matrix as m ¼ ffiffiffiffiffiffiffiffiffiffi

mnms
p

, as proposed by Biot (1965),
corresponds to a (geometric) mean stiffness of the anisotropic
material. As shown by Cobbold (1976), m is also the determinant of
the constitutive matrix that links stresses and strain rates in an
anisotropic viscous matrix. This determinant is insensitive to
an exchange of ms and mn in the system of equations that occurs if an
anisotropic material is rotated 45�, which explains the equality of
the growth rates at 0�, 45� and 90�. While the numerical growth
rates for anisotropies at 45� are also in good agreement with the
analytical values at low viscosity contrasts, the growth rates for
a ¼ 0� and 90� show considerable misfit for large anisotropy values,
the origin of which however could not be determined (Fig. 1d–f).
These results demonstrate that the analytical solution of Fletcher
(1974) can indeed be used as a benchmark test for numerical codes
in the case of a symmetric anisotropy orientation (at 0�, 45� or 90�

to the layer), provided that the viscosity contrast between layer and
matrix is sufficiently large.

However, the numerical growth rates for oblique anisotropies
(a s 0�, 45� or 90�) deviate strongly from the analytical solution
(Fig. 1d–f). Possible explanations for this behaviour are not
straightforward and show the limits in applicability of the analyt-
ical single layer folding theory. An oblique anisotropy orientation
implies that the mechanical properties of the matrix will be dif-
ferent on opposing limbs of a growing fold. This difference causes
one limb to grow faster, while the amplification of the second limb
is hampered. In addition, folding in a Newtonian anisotropic matrix
involves strong rotational effects (Fig. 5b2–b3). If this potential
rotational component is damped by prescribing non-rotational
boundary conditions (e.g. by setting vy to be periodic on the lateral
boundaries), the growth rate of folding is correspondingly reduced
(e.g. see (4) and (5) in Fig. 3). Such boundary conditions were
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necessary in the numerical models of finite amplitude folding in
order to counteract the tendency for the whole model to rotate.
Single layer folding developed in an oblique anisotropic matrix
involves complex displacements of the layer surface. The pertur-
bation flow field is not as simple as for single layer folding in an
isotropic material (e.g. see Passchier et al., 2005, Fig. 10), but in-
volves a combination of layer-perpendicular and layer-parallel
motion, together with a considerable amount of layer rotation.
Because of this, it is not possible to generalize the current results to
make any statement about wavelength selection or growth rate
trends. Due to the complex kinematics, it will also be very difficult,
if not impossible, to deduce viscosity contrasts from folds (Sherwin
and Chapple, 1968; Schmalholz and Podladchikov, 2001) when an
oblique anisotropy is present in the matrix.

As discussed above, if there are neither irregularities in the
initial anisotropy orientation nor non-linear rheological effects, the
final fold shape is strongly influenced by the interaction of matrix
deformation with the boundaries of the model domain, irrespective
of how far they are located from the competent layer. The asym-
metry and second-order folding of larger wavelength that occurred
in Newtonian material (b3 in Figs. 4 and 5) are entirely caused by
the interaction of the free surface at the top of the model with the
deforming anisotropic matrix. In natural rocks, however, material
properties can vary considerably (e.g. Kim and Gao, 1995) and the
rheology often follows a non-linear constitutive law (e.g. Ranalli,
1995). The inclusion of these factors in numerical experiments is
necessary to provide a mechanism for more distributed de-
formation in the matrix, leading to the formation of less pervasive,
less regular, but more natural structures.

Furthermore, the results emphasize the special role of the
boundary conditions in numerical and analogue experiments that
deal with anisotropic material. Besides the effects of different kinds
of boundary conditions (stress or velocity prescribed), the type of
boundary condition (free slip, prescribed velocity) has a much
stronger influence on the result if the anisotropy is oblique to the
principal stress axes. Any slip at the boundaries will allow the
matrix and layer to rotate as a whole. This is of particular impor-
tance to analogue models, where perfect non-slip boundary con-
ditions are difficult to achieve. Even for power-law materials, where
the effect of the boundaries is reduced by the tendency to localize
deformation around the perturbed region of folding, there is a dis-
tinct difference between free-slip and non-slip boundaries (Fig. 7).
In our experiments, free slip upper and lower boundary conditions
allow more internal rotation than totally prescribed boundaries and
therefore also the development of a second order fold with wave-
length equal to the model width, although without any clear
asymmetry (Fig. 7d). Such rotational effects developed when a non-
slip boundary condition is not strictly imposed will also complicate
rock deformation laboratory experiments that attempt to de-
termine the degree of anisotropy in natural rocks by compressing
samples at different angles to the foliation.

The experiments in power-law material document the forma-
tion of asymmetric chevron folds in anisotropic matrix by broad-
ening and merging of conjugate deformation band structures. The
two sets of deformation bands develop neither symmetrically nor
simultaneously with respect to the oblique anisotropy, and also
differ in their width. In the set of bands that develops first, the
sense of rotation of the anisotropy planes is the same as that im-
posed by the bulk pure shear background deformation, whereas in
the second set it is opposite. The first set of bands is favoured
because it rotates the plane of anisotropy into an orientation at
a higher angle to the maximum shortening direction, which in turn
causes a local reduction of the stresses in the direction of short-
ening (Cobbold, 1976). An antithetic rotation of the anisotropy
planes increases the stresses parallel to the maximum shortening
direction. This ‘resistance’ has to be overcome to develop the
second-antithetic-set of bands, which are therefore more difficult
to form. The observed variations in angle (with respect to the plane
of anisotropy) and width correspond well with the analogue ex-
periments of Cobbold et al. (1971, Fig. 17). The conjugate de-
formation bands show characteristics of both chevron folds and
‘true’ kink-bands. An unambiguous classification of structures as
either of these two end-members is therefore not always possible,
and transitional stages between them are likely to be formed in
natural rocks (as suggested, for example, by Treagus, 2003).

The combination of a random initial perturbation on the layer-
matrix interface and an oblique anisotropy orientation in the matrix
produces large wavelength to thickness folds despite the low nor-
mal viscosity contrast (Fig.10). This is consistent with the increase in
growth rate and wavelength predicted from the growth rate spectra
at infinitesimal wavelength for such anisotropic behaviour (shown
in Fig.1 for the linear viscous case, but also applicable for power-law
rheology). The developing single layer folds are now asymmetric,
even though the background deformation field is purely coaxial. As
discussed before, the asymmetric chevron folds in the matrix are
a consequence of the different widths of the conjugate deformation
bands, which is induced by the initially oblique anisotropy. Addi-
tional experiments, the results of which are not presented here,
show that the asymmetry of the single layer fold depends to some
degree on the normal viscosity contrast between layer and matrix.
At higher viscosity contrasts, very irregular fold shapes with large
amplitudes are developed due to the high growth rates and the
strong interaction with the matrix. Periodic fold trains with a rec-
ognizable asymmetry in the competent layer are more clearly de-
veloped if the viscosity contrast between layer and matrix is low.

These experiments with an initial random perturbation, which
in our opinion most closely approximate natural conditions, dem-
onstrate that asymmetric folds can form in coaxial flow fields as
a result of interaction between a competent isotropic layer and an
anisotropic matrix. A sequence of kinematically distinct de-
formation phases (as often suggested, for example, by Carosi et al.,
2004) is not required to form asymmetric folds in anisotropic rocks.

10. Conclusions

The orientation of the matrix anisotropy around a single iso-
tropic layer has strong effects on the infinitesimal and finite stages
of folding of that layer. If the bulk viscosity is approximated as the
geometric mean of the normal and shear viscosities, the (isotropic)
analytical solution of Fletcher (1974) can be numerically repro-
duced for specific anisotropy orientations (i.e. a ¼ 0�, 45� or 90�)
and high normal viscosity contrasts. The best correspondence be-
tween numerical models and the analytical solution, for both low
and high normal viscosity contrasts, is with a ¼ 45�. A careful use of
the analytical solution for benchmarking of numerical code in-
cluding anisotropic behaviour is therefore possible. For other ori-
entations of the planar matrix anisotropy, the dynamic growth rate
of the single layer fold differs from the analytical value, particularly
for lower normal viscosity contrasts and obliquities (e.g. a ¼ 20� or
70�), probably reflecting the marked asymmetry of the folds de-
veloped in the matrix, with opposite limbs in a quite different
orientation relative to the bulk shortening direction.

Strict control of the boundary conditions in both analogue and
numerical experiments is crucial when dealing with anisotropic
materials, especially when the plane of anisotropy is oblique to the
boundaries, because the anisotropic domains tend to rotate if this is
allowed by free-slip conditions at the boundaries. This bulk rotation
can strongly influence the finite structures. In non-linear materials,
the matrix deformation is characterized by the formation of con-
jugate deformation bands, which develop neither simultaneously
nor symmetrically. The asymmetry of these conjugate bands pro-
duces asymmetric chevron folds as a result of broadening and
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merging of the bands during progressive deformation. Likewise,
folded isotropic competent layers in a weak matrix with a randomly
perturbed anisotropy orientation can show a significant asymmetry
at low viscosity contrasts. We conclude that asymmetric folds in
both matrix and layer can be formed in anisotropic rock subjected
to pure shear bulk deformation, even if the degree of anisotropy is
low and the competent layer is initially oriented parallel to the
maximum shortening direction.
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